Non-degenerate Mixed Functions
نویسنده
چکیده
Mixed functions are analytic functions in variables z1, . . . , zn and their conjugates z̄1, . . . , z̄n. We introduce the notion of Newton nondegeneracy for mixed functions and develop a basic tool for the study of mixed hypersurface singularities. We show the existence of a canonical resolution of the singularity, and the existence of the Milnor fibration under the strong non-degeneracy condition.
منابع مشابه
Conductivity Coefficient Modeling in Degenerate and Non-Degenerate Modes on GNSs
Carbon nanoscrolls (CNSs) with tubular structure similar to the open multiwall carbonnanotube have been of hot debate during recent years. Due to its unique property, Graphene Nanoscroll (GNS) have attracted many research groups’ attention and have been used by them. They specially studied on energy storage devices such as batteries and super capacitors. These devices can be schematically...
متن کاملMixed Functions of Strongly Polar Weighted Homogeneous Face Type
Let f(z, z̄) be a mixed polynomial with strongly non-degenerate face functions. We consider a canonical toric modification π : X → C and a polar modification πR : Y → X. We will show that the toric modification resolves topologically the singularity of V and the zeta function of the Milnor fibration of f is described by a formula of a Varchenko type.
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کامل2 00 3 Geometric phases for non - degenerate and degenerate mixed states
This paper focuses on the geometric phase of general mixed states under unitary evolution. Here we analyze both non-degenerate as well as degenerate states. Starting with the non-degenerate case, we show that the usual procedure of subtracting the dynamical phase from the total phase to yield the geometric phase for pure states, does not hold for mixed states. To this end, we furnish an express...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009